Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
1. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
2. Write all the other trigonometric ratios of ∠A in terms of sec A.
Answer:
3. Evaluate :
(i) (sin263° + sin227°)/(cos217° + cos273°)
(ii) sin 25° cos 65° + cos 25° sin 65°
Answer:
(i) (sin263° + sin227°)/(cos217° + cos273°)
(ii) sin 25° cos 65° + cos 25° sin 65°
4. (i) 9 sec2A – 9 tan2A =
(A) 1 (B) 9 (C) 8 (D) 0
(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ)
(A) 0 (B) 1 (C) 2 (D) – 1
(iii) (secA + tanA) (1 – sinA) =
(A) secA (B) sinA (C) cosecA (D) cosA
(iv) 1+tan2A/1+cot2A =
(A) sec2A (B) -1 (C) cot2A (D) tan2A
Answer:
(i) (i) 9 sec2A – 9 tan2A =
(A) 1 (B) 9 (C) 8 (D) 0
(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ)
(A) 0 (B) 1 (C) 2 (D) – 1
(iii) (secA + tanA) (1 – sinA) =
(A) secA (B) sinA (C) cosecA (D) cosA
(iv) 1+tan2A/1+cot2A =
(A) sec2A (B) -1 (C) cot2A (D) tan2A
5. Prove the following identities, where the angles involved are acute angles for which the
expressions are defined.
(i) (cosec θ – cot θ)2 = (1-cos θ)/(1+cos θ)
(ii) cos A/(1+sin A) + (1+sin A)/cos A = 2 sec A
(iii) tan θ/(1-cot θ) + cot θ/(1-tan θ) = 1 + sec θ cosec θ
[Hint : Write the expression in terms of sin θ and cos θ]
(iv) (1 + sec A)/sec A = sin2A/(1-cos A)
[Hint : Simplify LHS and RHS separately]
(v) (cos A–sin A+1)/(cos A+sin A–1) = cosec A + cot A,using the identity cosec2A = 1+cot2A.
(vi) √1 + sin A/1 – sin A = sec A+ tan A
(vii) (sin θ – 2sin3θ)/(2cos3θ-cos θ) = tan θ
(viii) (sin A + cosec A)2 + (cos A + sec A)2 = 7+tan2A+cot2A
(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)
[Hint : Simplify LHS and RHS separately]
(x) (1+tan2A/1+cot2A) = (1-tan A/1-cot A)2 = tan2A
Answer:
(i) (cosec θ – cot θ)2 = (1-cos θ)/(1+cos θ)
(ii) cos A/(1+sin A) + (1+sin A)/cos A = 2 sec A
(iii) tan θ/(1-cot θ) + cot θ/(1-tan θ) = 1 + sec θ cosec θ
[Hint : Write the expression in terms of sin θ and cos θ]
(iv) (1 + sec A)/sec A = sin2A/(1-cos A)
[Hint : Simplify LHS and RHS separately]
(v) (cos A–sin A+1)/(cos A+sin A–1) = cosec A + cot A,using the identity cosec2A = 1+cot2A
LHS = 1 + sin A/(1 – sin A) …..(1)
Multiplying and dividing by (1 + sin A)
⇒ (1 + sin A)(1 + sin A/1 – sin A)(1 + sin A)
= (1 + sin A)²/(1 – sin² A) [a² – b² = (a – b)(a + b)]
= (1 + sinA)/1 – sin² A
= 1 + sin A/cos² A
= 1 + sin A/cos A
= 1/cos A + sin A/cos A
= sec A + tan A
= R.H.S
(vii) (sin θ – 2sin3θ)/(2cos3θ-cos θ) = tan θ
(viii) (sin A + cosec A)2 + (cos A + sec A)2 = 7+tan2A+cot2A
(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)
[Hint : Simplify LHS and RHS separately]
(x) (1+tan2A/1+cot2A) = (1-tan A/1-cot A)2 = tan2A
CHAPTER NAME | OLD NCERT | NEW NCERT | |
Real Numbers | EXERCISE 1.1 | ||
EXERCISE 1.2 | 1.1 | CLICK HERE | |
EXERCISE 1.3 | 1.2 | CLICK HERE | |
EXERCISE 1.4 | |||
Polynomials | EXERCISE 2.1 | 2.1 | CLICK HERE |
EXERCISE 2.2 | 2.2 | CLICK HERE | |
EXERCISE 2.3 | |||
EXERCISE 2.4 | |||
Pair of Linear Equations in Two Variables | EXERCISE 3.1 | ||
EXERCISE 3.2 | 3.1 | CLICK HERE | |
EXERCISE 3.3 | 3.2 | CLICK HERE | |
EXERCISE 3.4 | 3.3 | CLICK HERE | |
EXERCISE 3.5 | |||
EXERCISE 3.6 | |||
EXERCISE 3.7 | |||
Quadratic Equations | EXERCISE 4.1 | 4.1 | CLICK HERE |
EXERCISE 4.2 | 4.2 | CLICK HERE | |
EXERCISE 4.3 | |||
EXERCISE 4.4 | 4.3 | CLICK HERE | |
Arithmetic Progressions | EXERCISE 5.1 | 5.1 | CLICK HERE |
EXERCISE 5.2 | 5.2 | CLICK HERE | |
EXERCISE 5.3 | 5.3 | CLICK HERE | |
EXERCISE 5.4 | 5.4 (Optional) | CLICK HERE | |
Triangles | EXERCISE 6.1 | 6.1 | CLICK HERE |
EXERCISE 6.2 | 6.2 | CLICK HERE | |
EXERCISE 6.3 | 6.3 | CLICK HERE | |
EXERCISE 6.4 | |||
EXERCISE 6.5 | |||
EXERCISE 6.6 | |||
Coordinate Geometry | EXERCISE 7.1 | 7.1 | CLICK HERE |
EXERCISE 7.2 | 7.2 | CLICK HERE | |
EXERCISE 7.3 | |||
EXERCISE 7.4 | |||
Introduction to Trigonometry | EXERCISE 8.1 | 8.1 | CLICK HERE |
EXERCISE 8.2 | 8.2 | CLICK HERE | |
EXERCISE 8.3 | |||
EXERCISE 8.4 | 8.3 | CLICK HERE | |
Some Applications of Trigonometry | EXERCISE 9.1 | 9.1 | CLICK HERE |
Circles | EXERCISE 10.1 | 10.1 | CLICK HERE |
EXERCISE 10.2 | 10.2 | CLICK HERE | |
Construction | |||
Areas Related to Circles | EXERCISE 12.1 | ||
EXERCISE 12.2 | 11.1 | CLICK HERE | |
EXERCISE 12.3 | |||
Surface Areas and Volumes | EXERCISE 13.1 | 12.1 | CLICK HERE |
EXERCISE 13.2 | 12.2 | CLICK HERE | |
EXERCISE 13.3 | |||
EXERCISE 13.4 | |||
EXERCISE 13.5 | |||
Statistics | EXERCISE 14.1 | 13.1 | CLICK HERE |
EXERCISE 14.2 | 13.2 | CLICK HERE | |
EXERCISE 14.3 | 13.3 | CLICK HERE | |
EXERCISE 14.4 | |||
Probability | EXERCISE 15.1 | 14.1 | CLICK HERE |
EXERCISE 15.2 |