Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
1. Evaluate :
(i) sin 18°/cos 72° (ii) tan 26°/cot 64° (iii) cos 48° – sin 42° (iv) cosec 31° – sec 59°
Answer:
(i) sin 18°/cos 72°
= sin (90° – 18°) /cos 72°
= cos 72° /cos 72° = 1
(ii) tan 26°/cot 64°
= tan (90° – 36°)/cot 64°
= cot 64°/cot 64° = 1
(iii) cos 48° – sin 42°
= cos (90° – 42°) – sin 42°
= sin 42° – sin 42° = 0
(iv) cosec 31° – sec 59°
= cosec (90° – 59°) – sec 59°
= sec 59° – sec 59° = 0
2. Show that :
(i) tan 48° tan 23° tan 42° tan 67° = 1
(ii) cos 38° cos 52° – sin 38° sin 52° = 0
Answer:
(i) tan 48° tan 23° tan 42° tan 67°
= tan (90° – 42°) tan (90° – 67°) tan 42° tan 67°
= cot 42° cot 67° tan 42° tan 67°
= (cot 42° tan 42°) (cot 67° tan 67°) = 1×1 = 1
(ii) cos 38° cos 52° – sin 38° sin 52°
= cos (90° – 52°) cos (90°-38°) – sin 38° sin 52°
= sin 52° sin 38° – sin 38° sin 52° = 0
3. If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A.
Answer:
tan 2A = cot (A- 18°)
⇒ cot (90° – 2A) = cot (A -18°)
Equating angles,
⇒ 90° – 2A = A- 18° ⇒ 108° = 3A
⇒ A = 36°
4. If tan A = cot B, prove that A + B = 90°.
Answer:
tan A = cot B
⇒ tan A = tan (90° – B)
⇒ A = 90° – B
⇒ A + B = 90°
5. If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A.
Answer:
sec 4A = cosec (A – 20°)
⇒ cosec (90° – 4A) = cosec (A – 20°)
Equating angles,
90° – 4A= A- 20°
⇒ 110° = 5A
⇒ A = 22°
6. If A, B and C are interior angles of a triangle ABC, then show that
sin (B+C/2) = cos A/2
Answer:
7. Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°.
Answer:
sin 67° + cos 75°
= sin (90° – 23°) + cos (90° – 15°)
= cos 23° + sin 15°
CHAPTER NAME | OLD NCERT | NEW NCERT | |
Real Numbers | EXERCISE 1.1 | ||
EXERCISE 1.2 | 1.1 | CLICK HERE | |
EXERCISE 1.3 | 1.2 | CLICK HERE | |
EXERCISE 1.4 | |||
Polynomials | EXERCISE 2.1 | 2.1 | CLICK HERE |
EXERCISE 2.2 | 2.2 | CLICK HERE | |
EXERCISE 2.3 | |||
EXERCISE 2.4 | |||
Pair of Linear Equations in Two Variables | EXERCISE 3.1 | ||
EXERCISE 3.2 | 3.1 | CLICK HERE | |
EXERCISE 3.3 | 3.2 | CLICK HERE | |
EXERCISE 3.4 | 3.3 | CLICK HERE | |
EXERCISE 3.5 | |||
EXERCISE 3.6 | |||
EXERCISE 3.7 | |||
Quadratic Equations | EXERCISE 4.1 | 4.1 | CLICK HERE |
EXERCISE 4.2 | 4.2 | CLICK HERE | |
EXERCISE 4.3 | |||
EXERCISE 4.4 | 4.3 | CLICK HERE | |
Arithmetic Progressions | EXERCISE 5.1 | 5.1 | CLICK HERE |
EXERCISE 5.2 | 5.2 | CLICK HERE | |
EXERCISE 5.3 | 5.3 | CLICK HERE | |
EXERCISE 5.4 | 5.4 (Optional) | CLICK HERE | |
Triangles | EXERCISE 6.1 | 6.1 | CLICK HERE |
EXERCISE 6.2 | 6.2 | CLICK HERE | |
EXERCISE 6.3 | 6.3 | CLICK HERE | |
EXERCISE 6.4 | |||
EXERCISE 6.5 | |||
EXERCISE 6.6 | |||
Coordinate Geometry | EXERCISE 7.1 | 7.1 | CLICK HERE |
EXERCISE 7.2 | 7.2 | CLICK HERE | |
EXERCISE 7.3 | |||
EXERCISE 7.4 | |||
Introduction to Trigonometry | EXERCISE 8.1 | 8.1 | CLICK HERE |
EXERCISE 8.2 | 8.2 | CLICK HERE | |
EXERCISE 8.3 | |||
EXERCISE 8.4 | 8.3 | CLICK HERE | |
Some Applications of Trigonometry | EXERCISE 9.1 | 9.1 | CLICK HERE |
Circles | EXERCISE 10.1 | 10.1 | CLICK HERE |
EXERCISE 10.2 | 10.2 | CLICK HERE | |
Construction | |||
Areas Related to Circles | EXERCISE 12.1 | ||
EXERCISE 12.2 | 11.1 | CLICK HERE | |
EXERCISE 12.3 | |||
Surface Areas and Volumes | EXERCISE 13.1 | 12.1 | CLICK HERE |
EXERCISE 13.2 | 12.2 | CLICK HERE | |
EXERCISE 13.3 | |||
EXERCISE 13.4 | |||
EXERCISE 13.5 | |||
Statistics | EXERCISE 14.1 | 13.1 | CLICK HERE |
EXERCISE 14.2 | 13.2 | CLICK HERE | |
EXERCISE 14.3 | 13.3 | CLICK HERE | |
EXERCISE 14.4 | |||
Probability | EXERCISE 15.1 | 14.1 | CLICK HERE |
EXERCISE 15.2 |