Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
1. Find the nature of the roots of the following quadratic equation. If the real roots exist, find them:
Answer:
We know that the quadratic equation ax2+bx+c = 0 has
(a) Two distinct real roots, if b2-4ac > 0,
(b) Two equal real roots, if b2-4ac = 0,
(c) No real roots, if b2-4ac < 0.
(i) 2x2-3x+5 = 0
Answer:
Comparing the given quadratic equation with the general form of quadratic equation ax2+bx+c = 0 we get
a = 2, b = -3 and c = 5
Then, b2-4ac = (-3)2-4×2×5 = 9-40 = -31 < 0
Hence the given quadratic equation has no real roots.
(ii) 3x2-4√3x+4 = 0
Answer:
Comparing the given quadratic equation with the general form of quadratic equation ax2+bx+c = 0 we get
a = 3, b = -4√3 and c = 4
Then, b2-4ac = (-4√3)2-4×3×4 = 48-48 = 0
Therefore, real roots exist for the given equation and they are equal to each other.
And the roots will be
Therefore, the roots are
(iii) 2x2-6x+3 = 0
Answer:
Comparing the given quadratic equation with the general form of quadratic equation ax2+bx+c = 0 we get
a = 2, b = -6 and c = 3
then, b2-4ac = (-6)2-4×2×3 = 36-24 = 12 > 0
Hence the given quadratic equation has two distinct real roots.
Applying quadratic formulato find roots,
2. Find the value of k for each of the following quadratic equations, so that they have two equal roots.
(i) 2x2+kx+3 = 0
Answer:
Comparing the given quadratic equation with the general form of quadratic equation ax2+bx+c = 0 we get
a = 2, b = k and c = 3
Now the given quadratic equation have two equal roots if
b2-4ac = 0
(k)2-4×2×3 = 0
k2-24 = 0
k2 = 24
k = ±√24
k = ± 2√6
Therefore, the required value of k is ± 2√6.
(ii) kx(x-2)+6 = 0
Answer:
The given quadratic equation can be written as
kx2-2kx+6 = 0….(1)
Comparing the quadratic equation (1) with the general form of quadratic equation ax2+bx+c = 0 we get
a = k, b = -2k and c = 6
Now the given quadratic equation have two equal roots if
b2-4ac = 0
(-2k)2-4×k×6 = 0
4k2-24k = 0
4k(k-6) = 0
k(k-6) = 0
k = 0
Or, k-6 = 0
k = 6
If k = 0, then equation will not have x2 and x, which is not possible because the given equation is quadratic equation.
Therefore, the required value of k is 6.
3. Is it possible to design a rectangular mango grove whose length is twice its breadth and the area is 800 m2. If so find its length and breadth.
Answer:
Let the breadth of the mango grove be x m and the length is 2x m.
Area = length × breadth
= x × 2x
= 2×2 m2
Then by the given condition,
2x2 = 800
x2 = 400
x = ±√400
x = ±20
Since, length cannot be negative, then x ≠ -20
Hence it is possible to design a rectangular mango grove whose length is twice its breadth and the area is 800 m2 and its breadth is 20 m and length is 20×2 = 40 m
4. Is the following situation possible? If so, determine their present ages .
The sum of the ages of two friends is 20 years. Four years ago, the product of their ages in years was 48.
Answer:
Let the age of 1st friend is x.
Then the age of 2nd friend is (20-x)
Four year ago their age was (x-4) and (20-x-4)
Then using the given condition we have
(x-4)(16-x) = 48
16x – 64 – x2 +4x = 48
20x – x2 – 64 – 48 = 0
x2 – 20x + 112 = 0……(1)
Now comparing the above quadratic equation with the general form of quadratic equation ax2+bx+c = 0 we get
a = 1, b = -20 and c = 112
then, b2-4ac = (-20)2-4×1×112 = 400-448 = -48 > 0
Therefore, no real root is possible for this equation and hence this situation is not possible.
5. Is it possible to design a rectangular park of perimeter 80 m and area 400 m2? If so find its length and breadth.
Answer:
Let the length and breadth of the park be “l” and “b”
Area of rectangle = 2(l + b)
2(l + b) = 80
l + b = 40
b = 40 – l
Then, Area = l(40 – l)
Then by the given condition,
l(40 – l) = 400
40l – l2 -400 = 0
l2 – 40l + 400 = 0….(1)
Now comparing the above quadratic equation with the general form of quadratic equation ax2+bx+c = 0 we get
a = 1, b = -40 and c = 400
Then, b2-4ac = (-40)2-4×1×400 = 1600-1600 = 0
As the quadratic equation has two equal roots then the given situation is possible.
Therefore, length of park, l = 20 m
And breadth of park, b = 40 – l = 40 – 20 = 20 m.
CHAPTER NAME | OLD NCERT | NEW NCERT | |
Real Numbers | EXERCISE 1.1 | ||
EXERCISE 1.2 | 1.1 | CLICK HERE | |
EXERCISE 1.3 | 1.2 | CLICK HERE | |
EXERCISE 1.4 | |||
Polynomials | EXERCISE 2.1 | 2.1 | CLICK HERE |
EXERCISE 2.2 | 2.2 | CLICK HERE | |
EXERCISE 2.3 | |||
EXERCISE 2.4 | |||
Pair of Linear Equations in Two Variables | EXERCISE 3.1 | ||
EXERCISE 3.2 | 3.1 | CLICK HERE | |
EXERCISE 3.3 | 3.2 | CLICK HERE | |
EXERCISE 3.4 | 3.3 | CLICK HERE | |
EXERCISE 3.5 | |||
EXERCISE 3.6 | |||
EXERCISE 3.7 | |||
Quadratic Equations | EXERCISE 4.1 | 4.1 | CLICK HERE |
EXERCISE 4.2 | 4.2 | CLICK HERE | |
EXERCISE 4.3 | |||
EXERCISE 4.4 | 4.3 | CLICK HERE | |
Arithmetic Progressions | EXERCISE 5.1 | 5.1 | CLICK HERE |
EXERCISE 5.2 | 5.2 | CLICK HERE | |
EXERCISE 5.3 | 5.3 | CLICK HERE | |
EXERCISE 5.4 | 5.4 (Optional) | CLICK HERE | |
Triangles | EXERCISE 6.1 | 6.1 | CLICK HERE |
EXERCISE 6.2 | 6.2 | CLICK HERE | |
EXERCISE 6.3 | 6.3 | CLICK HERE | |
EXERCISE 6.4 | |||
EXERCISE 6.5 | |||
EXERCISE 6.6 | |||
Coordinate Geometry | EXERCISE 7.1 | 7.1 | CLICK HERE |
EXERCISE 7.2 | 7.2 | CLICK HERE | |
EXERCISE 7.3 | |||
EXERCISE 7.4 | |||
Introduction to Trigonometry | EXERCISE 8.1 | 8.1 | CLICK HERE |
EXERCISE 8.2 | 8.2 | CLICK HERE | |
EXERCISE 8.3 | |||
EXERCISE 8.4 | 8.3 | CLICK HERE | |
Some Applications of Trigonometry | EXERCISE 9.1 | 9.1 | CLICK HERE |
Circles | EXERCISE 10.1 | 10.1 | CLICK HERE |
EXERCISE 10.2 | 10.2 | CLICK HERE | |
Construction | |||
Areas Related to Circles | EXERCISE 12.1 | ||
EXERCISE 12.2 | 11.1 | CLICK HERE | |
EXERCISE 12.3 | |||
Surface Areas and Volumes | EXERCISE 13.1 | 12.1 | CLICK HERE |
EXERCISE 13.2 | 12.2 | CLICK HERE | |
EXERCISE 13.3 | |||
EXERCISE 13.4 | |||
EXERCISE 13.5 | |||
Statistics | EXERCISE 14.1 | 13.1 | CLICK HERE |
EXERCISE 14.2 | 13.2 | CLICK HERE | |
EXERCISE 14.3 | 13.3 | CLICK HERE | |
EXERCISE 14.4 | |||
Probability | EXERCISE 15.1 | 14.1 | CLICK HERE |
EXERCISE 15.2 |