NCERT Solutions for Class 10 Maths Exercise 4.1 (NEW SESSION)

Solve the followings Questions.

1. Check whether the following are quadratic equation?
(i) (x+1)2 = 2(x-3)
(ii) x2-2x = (-2)(3-x)
(iii) (x − 2) (x + 1) = (x − 1) (x + 3)
(iv) (x − 3) (2x + 1) = x (x + 5)
(v) (2x − 1) (x − 3) = (x + 5) (x − 1)
(vi) x2+3x+1 = (x-2)2
(vii) (x+2)3 = 2x(x2-1)
(viii) x3-4x2-x+1 = (x-2)3

Answer:
An equation of the form ax2+bx+c = 0, a ≠ 0 and a, b, c are real numbers is called quadratic equation.

(i) (x+1)2 = 2(x-3)
x2+2x+1 = 2x-6
x2+2x+1 -2x+6 = 0
x2+7 = 0
Comparing above equation with ax2+bx+c = 0, we have a = 1≠ 0, b = 0, c = 7
Hence the given equation is quadratic equation.

(ii) x2-2x = (-2)(3-x)
x2-2x  = -6+2x
x2-2x -2x+6 = 0
x2-4x+6 = 0
Comparing above equation with ax2+bx+c = 0, we have a = 1≠ 0, b = -4, c = 6
Hence the given equation is quadratic equation.

(iii) (x-2)(x+1) = (x-1)(x+3)
x2-2x+x-2 = x2-x+3x-3
x2-2x+x-2 -x2+x-3x+3= 0
-3x+1 = 0
Comparing above equation with ax2+bx+c = 0, we have a = 0, b = -3, c = 1
Hence the given equation is not quadratic equation.

(iv) (x-3)(2x+1) = x(x+5)
x2-6x+x-3 = x2+5x
x2-6x+x-3 -x2-5x = 0
-10x-3 = 0
Comparing above equation with ax2+bx+c = 0, we have a = 0, b = -10, c = -3
Hence the given equation is not quadratic equation.

(v) (2x-1)(x-3) = (x+5)(x-1)
2x2-6x-x+3 = x2+5x-x-5
2x2-6x-x+3 -x2-5x+x+5 = 0
x2-11x+8 = 0
Comparing above equation with ax2+bx+c = 0, we have a = 1 ≠ 0, b = -11, c = 8
Hence the given equation is quadratic equation.

(vi) x2+3x+1 = (x-2)2
x2+3x+1 = x2-4x+4
x2+3x+1 -x2+4x-4= 0
7x-3 = 0
Comparing above equation with ax2+bx+c = 0, we have a = 0, b = 7, c = -3
Hence the given equation is not quadratic equation.

(vii) (x+2)3 = 2x(x2-1)
x3+6x2+12x+8 = 2x3-2x
x3+6x2+12x+8 -2x3+2x = 0
x3 – 6x2-14x-8 = 0
It is not in the form of ax2+bx+c = 0s
Hence the given equation is not a quadratic equation.

(viii) x3-4x2-x+1 = (x-2)3
x3-4x2-x+1 = x3-6x2+12x-8
x3-4x2-x+1 -x3+6x2-12x+8= 0
2x2-13x+9 = 0
Comparing above equation with ax2+bx+c = 0, we have a = 2 ≠ 0, b = -13, c = 9
Hence the given equation is quadratic equation.
 

Represent the following situations in the form of quadratic equations:

2. (i) The area of rectangular plot is 528 m2. The length of the plot (in meters) is one more than twice its breadth. We need to find the length and breadth of the plot .

Answer:

Let the breadth of the plot is x meters
Then, the length is (2x + 1) meters.
Area = length × breadth
528 = x × (2x + 1)
528 = 2x2 + x
2x2 + x – 528 = 0

(ii) The product of two consecutive positive integers is 306. We need to find the integers.

Answer:

Let x and x+1 be two consecutive integers.
Then, x(x + 1) = 306
x2 + x – 306 = 0

(iii) Rohan’s mother is 26 years older than him. The products of their ages (in years) 3 years from now will be 360. We would like to find Rohan’s present age.

Answer:

Let x be the Rohan’s present age. Then, his mother’s present age is x+26
After 3 years theirs ages will be x+3 and x+26+3 = x+29 respectively.
Hence,
(x+3)(x+29) = 360
x2+3x+29x+87 = 360
x2+32x- 273 = 0

(iv) A train travels a distance of 480 km at a uniform speed. If the speed had been 8 km/h less, then it would have taken 3 hours more to cover the same distance. We need to find the speed of the train.

Answer:

Let speed of train be x km/h

Time taken by train to cover 480 km = 480xhours

If, speed had been 8km/h less then time taken would be (480x−8) hours

According to given condition, if speed had been 8km/h less then time taken is 3 hours less.

Therefore, 480x – 8 = 480x + 3

⇒480 (1x – 8 − 1x) = 3

⇒480 (x – x + 8) (x) (x − 8) = 3

⇒480 × 8 = 3 (x) (x − 8)

NCERT Solutions for Class 10 Maths chapter 4-Quadratic Equations Exercise 4.1/image048.png

This is a Quadratic Equation.

CHAPTER NAMEOLD NCERTNEW NCERT 
Real NumbersEXERCISE 1.1 
EXERCISE 1.21.1CLICK HERE
EXERCISE 1.31.2CLICK HERE
EXERCISE 1.4
PolynomialsEXERCISE 2.12.1CLICK HERE
EXERCISE 2.22.2CLICK HERE
EXERCISE 2.3
EXERCISE 2.4
Pair of Linear Equations in Two VariablesEXERCISE 3.1
EXERCISE 3.23.1CLICK HERE
EXERCISE 3.33.2CLICK HERE
EXERCISE 3.43.3CLICK HERE
EXERCISE 3.5
EXERCISE 3.6
EXERCISE 3.7
Quadratic EquationsEXERCISE 4.14.1CLICK HERE
EXERCISE 4.24.2CLICK HERE
EXERCISE 4.3
EXERCISE 4.44.3CLICK HERE
Arithmetic ProgressionsEXERCISE 5.15.1CLICK HERE
EXERCISE 5.25.2CLICK HERE
EXERCISE 5.35.3CLICK HERE
EXERCISE 5.45.4 (Optional)CLICK HERE
TrianglesEXERCISE 6.16.1CLICK HERE
EXERCISE 6.26.2CLICK HERE
EXERCISE 6.36.3CLICK HERE
EXERCISE 6.4
EXERCISE 6.5
EXERCISE 6.6
Coordinate GeometryEXERCISE 7.17.1CLICK HERE
EXERCISE 7.27.2CLICK HERE
EXERCISE 7.3
EXERCISE 7.4
Introduction to TrigonometryEXERCISE 8.18.1CLICK HERE
EXERCISE 8.28.2CLICK HERE
EXERCISE 8.3
EXERCISE 8.48.3CLICK HERE
Some Applications of TrigonometryEXERCISE 9.19.1CLICK HERE
CirclesEXERCISE 10.110.1CLICK HERE
EXERCISE 10.210.2CLICK HERE
Construction
Areas Related to CirclesEXERCISE 12.1
EXERCISE 12.211.1CLICK HERE
EXERCISE 12.3
Surface Areas and VolumesEXERCISE 13.112.1CLICK HERE
EXERCISE 13.212.2CLICK HERE
EXERCISE 13.3
EXERCISE 13.4
EXERCISE 13.5
StatisticsEXERCISE 14.113.1CLICK HERE
EXERCISE 14.213.2CLICK HERE
EXERCISE 14.313.3CLICK HERE
EXERCISE 14.4
ProbabilityEXERCISE 15.114.1CLICK HERE
EXERCISE 15.2

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!