NCERT Solutions for Class 10 Maths Exercise 2.2 (NEW SYLLABUS)

Solve the followings Questions.

1. Find the zeros of the quadratic polynomials and verify the relationships between the zeros and the coefficients.

(i) x2-2x-8

Answer:

Let, P(x) = x2-2x-8

Comparing P(x) with a quadratic equation ax2+bx+c

we have b = -2 and c = -8.

P(x) = x2-2x-8

= x2-4x+2x-8

= x(x-4) + 2(x-4)

= (x-4) (x+2)

Therefore, the value of P(x) will be zero if x-4=0 or x+2=0 i.e., when x=4 or x=-2

Hence the zeros of P(x) are 4, -2

Sum of zeros = 4+(-2) = 2/1 = –-b/a = (-Coefficient of x)/(Coefficient of x2)

Product of the zeros = 4(-2) = -8 = -8/1 = c/a = Constant term / Coefficient of x2

(ii) 4s2-4s+1

Answer:

Let P(x) = 4s2-4s+1

To find the zeros of the quadratic polynomial we consider

4s2 − 4s + 1 = 0

4s2 − 2s – 2s + 1 = 0

2s(2s – 1) -1(2s – 1) = 0

(2s – 1)(2s – 1) = 0

2s – 1 = 0 and 2s – 1 = 0

2s = 1 and 2s = 1

s = 1/2 and s = 1/2

∴ The zeroes of the polynomial = 1/2 and 1/2

Sum of the zeroes = -(coefficient of s)/(coefficient of s2)

Sum of the zeroes = -(-4)/4 = 1

Let’s find the sum of the roots = 1/2 + 1/2 = 1

Product of the zeros = Constant term / Coefficient of s2

Product of the zeros =1 / 4

Let’s find the products of the roots = 1/2 × 1/2 = 1/4

(iii) 6x2-3-7x

Answer:

Let, P(x) = 6x2-3-7x

To find the zeros

Let us put f(x) = 0

⇒ 6x2 – 7x – 3 = 0

⇒ 6x2 – 9x + 2x – 3 = 0

⇒ 3x(2x – 3) + 1(2x – 3) = 0

⇒ (2x – 3)(3x + 1) = 0

⇒ 2x – 3 = 0

x = 3/2

⇒ 3x + 1 = 0

⇒ x = -1/3

It gives us 2 zeros, for x = 3/2 and x = -1/3

Hence, the zeros of the quadratic equation are 3/2 and -1/3.

Now, for verification

Sum of zeros = – coefficient of x / coefficient of x2

3/2 + (-1/3) = – (-7) / 6 7/6 = 7/6

Product of roots = constant / coefficient of x2

3/2 x (-1/3) = (-3) / 6 -1/2 = -1/2

Therefore, the relationship between zeros and their coefficients is verified.

(iv) 4u2+8u

Answer:

Let, P(u) = 4u2+8u

Comparing P(u) with a quadratic equation au2+bu+c we have a = 4 ,b= 8  and c = 0

P(u) = 4u2+8u

   = u(4u+8)

Therefore, the value of P(u) will be zero

Then, u = 0

Or, 4u+8 = 0

4u = -8

u = -2

Hence the zeros of P(s) are 0, -2

Now sum of zeros = 0+(-2) =-2 = -2

And product of the zeros = 0 X 2= 0

But, the Sum of the zeroes in any quadratic polynomial equation is given by = −coeff.of u / coeff.of u2 = −8/4 = −2

and, the product of zeroes in any quadratic polynomial equation is given by = constant term / coeff.of u2 = −0/4 = 0

(v) t2-15

Answer:

Let P(t) = t2-15

Comparing P(t) with a quadratic equation at2+bt+c we have a = 1,b= 0 and c = -15

Therefore, the value of P(t) will be zero if t2-15 = 0 i.e., t2= 15 so t = ±√15

Hence the zeros of P(s) are √15, – √15

Sum of zeros = √15 – √15 = 0 = (−coeff.of t / coeff.of t2)

Product of the zeros = √15(-√15) = -15 =(constant term / coeff.of t2)

(vi) 3x2– x-4

Answer:

Let P(x) = 3x2-x-4

Comparing P(x) with a quadratic equation ax2+bx+c we have a = 3, b= -1 and c = –4

P(x) = 3x2-x-4

= 3x2-4x+3x-4

= x(3x-4)+1(3x-4)

= (3x-4)(x+1)

Therefore the value of P(x) will be zero if 3x-4=0 or x+1=0

Then, 3x = 4  

x = 4/3

Or, x = -1

Hence the zeros of P(x) are 4/3, – 1

Sum of zeros = 4/3 – 1= 1/3  = -b/a = (-Coefficient of x)/(Cofficient of x2)

Product of the zeros = (4/3) (-1) = –4/3  = = (constant term)/(Cofficient of x2)

2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i) 1/4 , −1

(ii) √2 , 13

(iii) 0, √5

(iv) 1, 1

(v) -1/4 , 1/4

(vi) 4, 1

Answer:

(i) 1/4, -1

Now formula of quadratic equation is

x²-(Sum of root)x + (Product of root) = 0

Plug the value in formula we get

x² –(1/4)x -1  = 0

Multiply by 4 to remove denominator we get

4x²  –  x  -4  = 0

(ii) √2 , 1/3

Now formula of quadratic equation is

x²-(Sum of root)x + (Product of root) = 0

Plug the value in formula we get

x² –(√2)x  + 1/3  = 0

Multiply by 3 to remove denominator we get

3x²  – 3√2 x + 1  = 0

(iii)  0, √5

Now formula of quadratic equation is

x²-(Sum of root)x + (Product of root) = 0

Plug the value in formula we get

x² –(0)x  + √5  = 0

simplify it we get

x²   + √5  = 0

(iv) 1, 1

Now formula of quadratic equation is

x²-(Sum of root)x + (Product of root) = 0

Plug the value in formula we get

x² –(1)x  + 1  = 0

simplify it we get

x²  –  x + 1  = 0

(v) -1/4 ,1/4

Now formula of quadratic equation is

x²-(Sum of root)x + (Product of root) = 0

Plug the value in formula we get

x² –(-1/4)x  + 1/4  = 0

multiply by 4 we get

4x²   +  x + 1  = 0

(vi) 4, 1

Now formula of quadratic equation is

x²-(Sum of root)x + (Product of root) = 0

Plug the value in formula we get

x² –(4)x  + 1 = 0

x² – 4x + 1 = 0

CHAPTER NAMEOLD NCERTNEW NCERT 
Real NumbersEXERCISE 1.1 
EXERCISE 1.21.1CLICK HERE
EXERCISE 1.31.2CLICK HERE
EXERCISE 1.4
PolynomialsEXERCISE 2.12.1CLICK HERE
EXERCISE 2.22.2CLICK HERE
EXERCISE 2.3
EXERCISE 2.4
Pair of Linear Equations in Two VariablesEXERCISE 3.1
EXERCISE 3.23.1CLICK HERE
EXERCISE 3.33.2CLICK HERE
EXERCISE 3.43.3CLICK HERE
EXERCISE 3.5
EXERCISE 3.6
EXERCISE 3.7
Quadratic EquationsEXERCISE 4.14.1CLICK HERE
EXERCISE 4.24.2CLICK HERE
EXERCISE 4.3
EXERCISE 4.44.3CLICK HERE
Arithmetic ProgressionsEXERCISE 5.15.1CLICK HERE
EXERCISE 5.25.2CLICK HERE
EXERCISE 5.35.3CLICK HERE
EXERCISE 5.45.4 (Optional)CLICK HERE
TrianglesEXERCISE 6.16.1CLICK HERE
EXERCISE 6.26.2CLICK HERE
EXERCISE 6.36.3CLICK HERE
EXERCISE 6.4
EXERCISE 6.5
EXERCISE 6.6
Coordinate GeometryEXERCISE 7.17.1CLICK HERE
EXERCISE 7.27.2CLICK HERE
EXERCISE 7.3
EXERCISE 7.4
Introduction to TrigonometryEXERCISE 8.18.1CLICK HERE
EXERCISE 8.28.2CLICK HERE
EXERCISE 8.3
EXERCISE 8.48.3CLICK HERE
Some Applications of TrigonometryEXERCISE 9.19.1CLICK HERE
CirclesEXERCISE 10.110.1CLICK HERE
EXERCISE 10.210.2CLICK HERE
Construction
Areas Related to CirclesEXERCISE 12.1
EXERCISE 12.211.1CLICK HERE
EXERCISE 12.3
Surface Areas and VolumesEXERCISE 13.112.1CLICK HERE
EXERCISE 13.212.2CLICK HERE
EXERCISE 13.3
EXERCISE 13.4
EXERCISE 13.5
StatisticsEXERCISE 14.113.1CLICK HERE
EXERCISE 14.213.2CLICK HERE
EXERCISE 14.313.3CLICK HERE
EXERCISE 14.4
ProbabilityEXERCISE 15.114.1CLICK HERE
EXERCISE 15.2

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!