Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
1. The following table shows the ages of the patients admitted in a hospital during a year:
Age (in years) | 5-15 | 15-25 | 25-35 | 35-45 | 45-55 | 55-65 |
Number of patients | 6 | 11 | 21 | 23 | 14 | 5 |
Find the mode and the mean of the data given above. Compare and interpret the two
measures of central tendency.
Answer:
To find out the modal class, let us the consider the class interval with high frequency
Here, the greatest frequency = 23, so the modal class = 35 – 45,
l = 35,
class width (h) = 10,
fm = 23,
f1 = 21 and f2 = 14
The formula to find the mode is
Mode = l+ [(fm-f1)/(2fm-f1-f2)]×h
Substitute the values in the formula, we get
Mode = 35+[(23-21)/(46-21-14)]×10
Mode = 35+(20/11) = 35+1.8
Mode = 36.8 year
So the mode of the given data = 36.8 year
Calculation of Mean:
First find the midpoint using the formula, xi = (upper limit +lower limit)/2
The mean formula is
Mean = x̄ = ∑fixi /∑fi
= 2830/80
= 35.37 years
Therefore, the mean of the given data = 35.37 years.
2. The following data gives the information on the observed lifetimes (in hours) of 225 electrical components :
Lifetime (in hours) | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 |
Frequency | 10 | 35 | 52 | 61 | 38 | 29 |
Determine the modal lifetimes of the components.
Answer:
Given:
From the given data the modal class is 60–80.
l = 60,
The frequencies are:
fm = 61, f1 = 52, f2 = 38 and h = 20
The formula to find the mode is
Mode = l+ [(fm-f1)/(2fm-f1-f2)]×h
Substitute the values in the formula, we get
Mode =60+[(61-52)/(122-52-38)]×20
Mode = 60+((9 x 20)/32)
Mode = 60+(45/8) = 60+ 5.625
Therefore, modal lifetime of the components = 65.625 hours.
3. The following data gives the distribution of total monthly household expenditure of 200 families of a village. Find the modal monthly expenditure of the families. Also, find the mean monthly expenditure :
Expenditure | Number of families |
1000-1500 | 24 |
1500-2000 | 40 |
2000-2500 | 33 |
2500-3000 | 28 |
3000-3500 | 30 |
3500-4000 | 22 |
4000-4500 | 16 |
4500-5000 | 7 |
Answer:
For Mode:
Given data:
Modal class = 1500-2000,
l = 1500,
Frequencies:
fm = 40 f1 = 24, f2 = 33 and
h = 500
Mode formula:
Mode = l+ [(fm-f1)/(2fm-f1-f2)]×h
Substitute the values in the formula, we get
Mode =1500+[(40-24)/(80-24-33)]×500
Mode = 1500+((16×500)/23)
Mode = 1500+(8000/23) = 1500 + 347.83
Therefore, modal monthly expenditure of the families = Rupees 1847.83
Calculation for mean:
First find the midpoint using the formula, xi =(upper limit +lower limit)/2
Let us assume a mean, A be 2750
The formula to calculate the mean,
Mean = x̄ = a +(∑fiui /∑fi)×h
Substitute the values in the given formula
= 2750+(-35/200)×500
= 2750-87.50
= 2662.50
So, the mean monthly expenditure of the families = Rupees 2662.50
4. The following distribution gives the state-wise teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two measures.
Answer:
5. The given distribution shows the number of runs scored by some top batsmen of the world in one-day cricket matches:
Find mode of the data.
Answer:
6. A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarized it in the table given below:
Find the mode of the data.
Answer:
CHAPTER NAME | OLD NCERT | NEW NCERT | |
Real Numbers | EXERCISE 1.1 | ||
EXERCISE 1.2 | 1.1 | CLICK HERE | |
EXERCISE 1.3 | 1.2 | CLICK HERE | |
EXERCISE 1.4 | |||
Polynomials | EXERCISE 2.1 | 2.1 | CLICK HERE |
EXERCISE 2.2 | 2.2 | CLICK HERE | |
EXERCISE 2.3 | |||
EXERCISE 2.4 | |||
Pair of Linear Equations in Two Variables | EXERCISE 3.1 | ||
EXERCISE 3.2 | 3.1 | CLICK HERE | |
EXERCISE 3.3 | 3.2 | CLICK HERE | |
EXERCISE 3.4 | 3.3 | CLICK HERE | |
EXERCISE 3.5 | |||
EXERCISE 3.6 | |||
EXERCISE 3.7 | |||
Quadratic Equations | EXERCISE 4.1 | 4.1 | CLICK HERE |
EXERCISE 4.2 | 4.2 | CLICK HERE | |
EXERCISE 4.3 | |||
EXERCISE 4.4 | 4.3 | CLICK HERE | |
Arithmetic Progressions | EXERCISE 5.1 | 5.1 | CLICK HERE |
EXERCISE 5.2 | 5.2 | CLICK HERE | |
EXERCISE 5.3 | 5.3 | CLICK HERE | |
EXERCISE 5.4 | 5.4 (Optional) | CLICK HERE | |
Triangles | EXERCISE 6.1 | 6.1 | CLICK HERE |
EXERCISE 6.2 | 6.2 | CLICK HERE | |
EXERCISE 6.3 | 6.3 | CLICK HERE | |
EXERCISE 6.4 | |||
EXERCISE 6.5 | |||
EXERCISE 6.6 | |||
Coordinate Geometry | EXERCISE 7.1 | 7.1 | CLICK HERE |
EXERCISE 7.2 | 7.2 | CLICK HERE | |
EXERCISE 7.3 | |||
EXERCISE 7.4 | |||
Introduction to Trigonometry | EXERCISE 8.1 | 8.1 | CLICK HERE |
EXERCISE 8.2 | 8.2 | CLICK HERE | |
EXERCISE 8.3 | |||
EXERCISE 8.4 | 8.3 | CLICK HERE | |
Some Applications of Trigonometry | EXERCISE 9.1 | 9.1 | CLICK HERE |
Circles | EXERCISE 10.1 | 10.1 | CLICK HERE |
EXERCISE 10.2 | 10.2 | CLICK HERE | |
Construction | |||
Areas Related to Circles | EXERCISE 12.1 | ||
EXERCISE 12.2 | 11.1 | CLICK HERE | |
EXERCISE 12.3 | |||
Surface Areas and Volumes | EXERCISE 13.1 | 12.1 | CLICK HERE |
EXERCISE 13.2 | 12.2 | CLICK HERE | |
EXERCISE 13.3 | |||
EXERCISE 13.4 | |||
EXERCISE 13.5 | |||
Statistics | EXERCISE 14.1 | 13.1 | CLICK HERE |
EXERCISE 14.2 | 13.2 | CLICK HERE | |
EXERCISE 14.3 | 13.3 | CLICK HERE | |
EXERCISE 14.4 | |||
Probability | EXERCISE 15.1 | 14.1 | CLICK HERE |
EXERCISE 15.2 |