Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
1. Prove that √2 is irrational.
Answer:
Let us prove √2 irrational by contradiction.
Let us suppose that √2 is rational.
So it can be expressed in the form p/q where p, q are co-prime integers and q≠0
√2 = p/q
Here p and q are coprime numbers and q ≠ 0
Solving
√2 = p/q
On squaring both the side we get,
=>2 = (p/q)2
=>2q2 = p2 ……..(1)
=> p2 = q2
So 2 divides p and p is a multiple of 2.
⇒ p = 2m
⇒ p² = 4m² ………………………………..(2)
From equations (1) and (2), we get,
2q² = 4m²
⇒ q² = 2m²
⇒ q² is a multiple of 2
⇒ q is a multiple of 2
Hence, p, q have a common factor 2. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number
√2 is an irrational number.
2. Prove that (3 + 2√5) is irrational.
Answer:
We will prove this by contradiction.
Let us suppose that (3+2√5) is rational.
It means that we have co-prime integers aand b(b ≠ 0) such that
So, it can be written in the form a/b
3 + 2√5 = a/b
Here a and b are coprime numbers and b ≠ 0
Solving 3 + 2√5 = a/b we get,
=>2√5 = a/b – 3
=>2√5 = (a-3b)/b
=>√5 = (a-3b)/2b
This shows (a-3b)/2b is a rational number. But we know that √5 is an irrational number.
So, it contradicts our assumption. Our assumption of 3 + 2√5 is a rational number is incorrect.
3 + 2√5 is an irrational number
Hence proved
3. Prove that the following are irrationals.
(i)
(ii)
(iii)
Answer:
(i) We can proveirrational by contradiction.
Let us suppose thatis rational.
It means we have some co-prime integers a and b (b ≠ 0) such that
1/√2 = p/q
√2 = q/p
By Squaring on both sides
2 × p2= q2
2, divides q2
∴ 2, divides q
∵ q is an even number.
Similarly ‘p’ is an even number.
∴ p and q are even numbers.
∴ Common factor of p and q is 2.
This contradicts the fact that p and q also irrational.
∴ √2 is an irrational number.
∴ is an irrational number.
(ii) We can proveirrational by contradiction.
Let us suppose thatis rational.
It means we have some co-prime integers a and b (b ≠ 0) such that
It means √5 which is equal also a rational number.
This contradicts to the fact that √5 is an irrational number.
This contradicts to the fact that 7√5 is rational number.
∴ 7√5 is a rational number.
(iii) We will proveirrational by contradiction.
Let us suppose that () is rational.
It means that we have co-prime integers aand b(b ≠ 0) such that
∴ √2 is also rational number.
This contradicts to the fact that √2 is an irrational number.
This contradicts to the fact that 6 + √2 is a rational number.
∴ 6 + √2 is an irrational number.
CHAPTER NAME | OLD NCERT | NEW NCERT | |
Real Numbers | EXERCISE 1.1 | ||
EXERCISE 1.2 | 1.1 | CLICK HERE | |
EXERCISE 1.3 | 1.2 | CLICK HERE | |
EXERCISE 1.4 | |||
Polynomials | EXERCISE 2.1 | 2.1 | CLICK HERE |
EXERCISE 2.2 | 2.2 | CLICK HERE | |
EXERCISE 2.3 | |||
EXERCISE 2.4 | |||
Pair of Linear Equations in Two Variables | EXERCISE 3.1 | ||
EXERCISE 3.2 | 3.1 | CLICK HERE | |
EXERCISE 3.3 | 3.2 | CLICK HERE | |
EXERCISE 3.4 | 3.3 | CLICK HERE | |
EXERCISE 3.5 | |||
EXERCISE 3.6 | |||
EXERCISE 3.7 | |||
Quadratic Equations | EXERCISE 4.1 | 4.1 | CLICK HERE |
EXERCISE 4.2 | 4.2 | CLICK HERE | |
EXERCISE 4.3 | |||
EXERCISE 4.4 | 4.3 | CLICK HERE | |
Arithmetic Progressions | EXERCISE 5.1 | 5.1 | CLICK HERE |
EXERCISE 5.2 | 5.2 | CLICK HERE | |
EXERCISE 5.3 | 5.3 | CLICK HERE | |
EXERCISE 5.4 | 5.4 (Optional) | CLICK HERE | |
Triangles | EXERCISE 6.1 | 6.1 | CLICK HERE |
EXERCISE 6.2 | 6.2 | CLICK HERE | |
EXERCISE 6.3 | 6.3 | CLICK HERE | |
EXERCISE 6.4 | |||
EXERCISE 6.5 | |||
EXERCISE 6.6 | |||
Coordinate Geometry | EXERCISE 7.1 | 7.1 | CLICK HERE |
EXERCISE 7.2 | 7.2 | CLICK HERE | |
EXERCISE 7.3 | |||
EXERCISE 7.4 | |||
Introduction to Trigonometry | EXERCISE 8.1 | 8.1 | CLICK HERE |
EXERCISE 8.2 | 8.2 | CLICK HERE | |
EXERCISE 8.3 | |||
EXERCISE 8.4 | 8.3 | CLICK HERE | |
Some Applications of Trigonometry | EXERCISE 9.1 | 9.1 | CLICK HERE |
Circles | EXERCISE 10.1 | 10.1 | CLICK HERE |
EXERCISE 10.2 | 10.2 | CLICK HERE | |
Construction | |||
Areas Related to Circles | EXERCISE 12.1 | ||
EXERCISE 12.2 | 11.1 | CLICK HERE | |
EXERCISE 12.3 | |||
Surface Areas and Volumes | EXERCISE 13.1 | 12.1 | CLICK HERE |
EXERCISE 13.2 | 12.2 | CLICK HERE | |
EXERCISE 13.3 | |||
EXERCISE 13.4 | |||
EXERCISE 13.5 | |||
Statistics | EXERCISE 14.1 | 13.1 | CLICK HERE |
EXERCISE 14.2 | 13.2 | CLICK HERE | |
EXERCISE 14.3 | 13.3 | CLICK HERE | |
EXERCISE 14.4 | |||
Probability | EXERCISE 15.1 | 14.1 | CLICK HERE |
EXERCISE 15.2 |