Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
1. Express each number as product of its prime factors:
(i) 140
(ii) 156
(iii) 3825
(iv) 5005
(v) 7429
Answer:
(i) 140 = 2 x 2 x 5 x 7 = 22 x 5 x 7
(ii) 156 = 2 x 2 x 3 x 13 = 22 x 3 x 13
(iii) 3825 = 3 x 3 x 5 x 17 = 32 x 52 x x 17
(iv) 5005 = 5 x 7 x 11 x 13
(v) 7429 = 17 x 19 x 23
2. Find the LCM and HCF of the following pairs of integers and verify that LCM xHCF = product of the two numbers.
(i) 26 and 91
(ii) 510 and 92
(iii) 336 and 54
Answer:
(i) 26 and 91
a = 26, b = 91
∴ H.C.F = 13
L.C.M = 2 × 7 × 13
= 14 × 13 = 182
∴ H.C.F × L.C.M = a × b
13 × 182 = 26 × 96
2366 = 2366
(ii) 510 and 92
a = 510, b = 92
(iii) 336 and 54
a = 336, b = 54Read more on Sarthaks.com – https://www.sarthaks.com/661852/find-the-lcm-and-the-following-pairs-integers-and-verify-that-lcm-hcf-product-the-two-numbers
336= 2 x 2 x 2 x 2 x 3 x 7 = 24 x 3 x 7
54 = 2 x 3 x 3 x 3 = 2 x 33
HCF = 2 x 3 = 6
LCM = 24 x 33 x 7= 3024
Product of two numbers 336 and 54 = 336 x 54= 18144
3024 x 6= 18144
Hence, product of two numbers = 18144
3. Find the LCM and HCF of the following integers by applying the prime factorisation method.
(i) 12, 15 and 21
(ii) 17, 23 and 29
(iii) 8, 9 and 25
Answer:
(i) 12, 15 and 21
12 = 2 × 2 × 3 = 22× 3
15 = 3 × 5
and 21 = 3 × 7
For HCF, we find minimum power of prime factor
H.C.F. = (3)1= 3
For LCM, taking maximum power of prime factors
L.C.M. = 22 × 3 × 5 × 7 = 4 × 3 × 5 × 7 = 420
So,H.C.F. = (3)1= 3
and L.C.M. = 420
(ii) 17, 23 and 29
17 = 1 × 17
23 = 1 x 23
29 = 1 x 29
For HCF, common factor is 1
HCF = 1
For LCM taking maximum power of prime factor.
L.C.M. = 1 × 17 × 23 × 29 = 11339
So H.C.F. = 1
L.C.M. = 11339
(iii) 8, 9 and 25
8 = 2 × 2 × 2 × 1 = 23× 1
9 = 3 × 3 = 32
and 25 = 5 × 5 = 52
For HCF common factor is 1
H.C.F. = 1
For LCM, taking maximum power of prime factors
L.C.M. = 23× 32 × 52
= 8 × 9 × 25 = 1800
So H.C.F. = 1
L.C.M. = 1800
4. Given that HCF (306, 657) = 9, find LCM (306, 657).
Answer:
HCF (306, 657) = 9
We know that, LCM × HCF = Product of two numbers
L.C.M x H.C.F = first Number x Second Number
L.C.M x 9 = 306 x 657
LCM = 22338
5. Check whether 6n can end with the digit 0 for any natural number n.
Answer:
TO CHECK: Whether 62can end with the digit 0 for any natural number n.
We know that
62 = (2 × 3)n
62 = (2)n ×(3)n
Therefore, prime factorization of 6ndoes not contain 5 and 2 as a factor together.
Hence 6ncan never end with the digit 0 for any natural number n
6. Explain why 7 x 11 x 13 and 7 x 6 x 5 x 3 x 2 x 1 + 5 are composite numbers.
Answer:
So, the given expression has 6 and 13 as its factors. Therefore, we can conclude that it is a composite number.
Similarly,
7 x 6 x 5 x 4 x 3 x 2 x 1 + 5
= 5 x (7 x 6 x 4 x 3 x 2 x 1 + 1) [taking 5 out- common]
= 5 x (1008 + 1)
= 5 x 1009
Since, 1009 is a prime number the given expression has 5 and 1009 as its factors other than 1 and the number itself.
Hence, it is also a composite number.
7. There is a circular path around a sports field. Sonia takes 18 minutes to drive one round of the field, while Ravi takes 12 minutes for the same. Suppose they both start at the same point and at the same time, and go in the same direction. After how many minutes will they meet again at the starting point?
Answer:
It can be observed that Ravi takes lesser time than Sonia for completing 1 round of the circular path. As they are going in the same direction, they will meet again at the same time when Ravi will have completed 1 round of that circular path with respect to Sonia. And the total time taken for completing this 1 round of circular path will be the LCM of time taken by Sonia and Ravi for completing 1 round of circular path respectively i.e., LCM of 18 minutes and 12 minutes.
LCM of 12 and 18= 2 x 2 x 3 x 3 = 36
Therefore, Ravi and Sonia will meet together at the starting point after 36 minutes.
CHAPTER NAME | OLD NCERT | NEW NCERT | |
Real Numbers | EXERCISE 1.1 | ||
EXERCISE 1.2 | 1.1 | CLICK HERE | |
EXERCISE 1.3 | 1.2 | CLICK HERE | |
EXERCISE 1.4 | |||
Polynomials | EXERCISE 2.1 | 2.1 | CLICK HERE |
EXERCISE 2.2 | 2.2 | CLICK HERE | |
EXERCISE 2.3 | |||
EXERCISE 2.4 | |||
Pair of Linear Equations in Two Variables | EXERCISE 3.1 | ||
EXERCISE 3.2 | 3.1 | CLICK HERE | |
EXERCISE 3.3 | 3.2 | CLICK HERE | |
EXERCISE 3.4 | 3.3 | CLICK HERE | |
EXERCISE 3.5 | |||
EXERCISE 3.6 | |||
EXERCISE 3.7 | |||
Quadratic Equations | EXERCISE 4.1 | 4.1 | CLICK HERE |
EXERCISE 4.2 | 4.2 | CLICK HERE | |
EXERCISE 4.3 | |||
EXERCISE 4.4 | 4.3 | CLICK HERE | |
Arithmetic Progressions | EXERCISE 5.1 | 5.1 | CLICK HERE |
EXERCISE 5.2 | 5.2 | CLICK HERE | |
EXERCISE 5.3 | 5.3 | CLICK HERE | |
EXERCISE 5.4 | 5.4 (Optional) | CLICK HERE | |
Triangles | EXERCISE 6.1 | 6.1 | CLICK HERE |
EXERCISE 6.2 | 6.2 | CLICK HERE | |
EXERCISE 6.3 | 6.3 | CLICK HERE | |
EXERCISE 6.4 | |||
EXERCISE 6.5 | |||
EXERCISE 6.6 | |||
Coordinate Geometry | EXERCISE 7.1 | 7.1 | CLICK HERE |
EXERCISE 7.2 | 7.2 | CLICK HERE | |
EXERCISE 7.3 | |||
EXERCISE 7.4 | |||
Introduction to Trigonometry | EXERCISE 8.1 | 8.1 | CLICK HERE |
EXERCISE 8.2 | 8.2 | CLICK HERE | |
EXERCISE 8.3 | |||
EXERCISE 8.4 | 8.3 | CLICK HERE | |
Some Applications of Trigonometry | EXERCISE 9.1 | 9.1 | CLICK HERE |
Circles | EXERCISE 10.1 | 10.1 | CLICK HERE |
EXERCISE 10.2 | 10.2 | CLICK HERE | |
Construction | |||
Areas Related to Circles | EXERCISE 12.1 | ||
EXERCISE 12.2 | 11.1 | CLICK HERE | |
EXERCISE 12.3 | |||
Surface Areas and Volumes | EXERCISE 13.1 | 12.1 | CLICK HERE |
EXERCISE 13.2 | 12.2 | CLICK HERE | |
EXERCISE 13.3 | |||
EXERCISE 13.4 | |||
EXERCISE 13.5 | |||
Statistics | EXERCISE 14.1 | 13.1 | CLICK HERE |
EXERCISE 14.2 | 13.2 | CLICK HERE | |
EXERCISE 14.3 | 13.3 | CLICK HERE | |
EXERCISE 14.4 | |||
Probability | EXERCISE 15.1 | 14.1 | CLICK HERE |
EXERCISE 15.2 |