Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
1. A survey was conducted by a group of students as a part of their environment awareness programme, in which they collected the following data regarding the number of plants in 20 houses in a locality. Find the mean number of plants per house.
Number of Plants | 0-2 | 2-4 | 4-6 | 6-8 | 8-10 | 10-12 | 12-14 |
Number of Houses | 1 | 2 | 1 | 5 | 6 | 2 | 3 |
Which method did you use for finding the mean, and why?
Answer:
No. of plants (Class interval) | No. of houses (fi) | Mid-point (xi) | fixi |
0-2 | 1 | 1 | 1 |
2-4 | 2 | 3 | 6 |
4-6 | 1 | 5 | 5 |
6-8 | 5 | 7 | 35 |
8-10 | 6 | 9 | 54 |
10-12 | 2 | 11 | 22 |
12-14 | 3 | 13 | 39 |
Sum fi = 20 | Sum fixi = 162 |
Mean = x̄ = ∑fixi /∑fi = 162/20 = 8.1
We would use direct method because the numerical value of fi and xi are small.
2. Consider the following distribution of daily wages of 50 workers of a factory.
Daily wages (in Rs.) | 100-120 | 120-140 | 140-160 | 160-180 | 180-200 |
Number of workers | 12 | 14 | 8 | 6 | 10 |
Find the mean daily wages of the workers of the factory by using an appropriate method.
Answer:
Here, the value of mid-point (xi) is very large, so assumed mean A = 150 and class interval is h = 20.
So, ui = (xi – A)/h = ui = (xi – 150)/20
Daily wages (Class interval) | Number of workers frequency (fi) | Mid-point (xi) | ui = (xi – 150)/20 | fiui |
100-120 | 12 | 110 | -2 | -24 |
120-140 | 14 | 130 | -1 | -14 |
140-160 | 8 | 150 | 0 | 0 |
160-180 | 6 | 170 | 1 | 6 |
180-200 | 10 | 190 | 2 | 20 |
Total | Sum fi = 50 | Sum fiui = -12 |
Mean = x̄ = A + h∑fiui /∑fi =150 + (20 × -12/50) = 150 – 4.8 = 145.20
Thus, mean daily wage = Rs. 145.20
3. The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is Rs 18. Find the missing frequency f.
Answer:
Here, the value of mid-point (xi) mean x̄ = 18
Class interval | Number of children (fi) | Mid-point (xi) | fixi |
11-13 | 7 | 12 | 84 |
13-15 | 6 | 14 | 84 |
15-17 | 9 | 16 | 144 |
17-19 | 13 | 18 = A | 234 |
19-21 | f | 20 | 20f |
21-23 | 5 | 22 | 110 |
23-25 | 4 | 24 | 96 |
Total | fi = 44+f | Sum fixi = 752+20f |
Mean = x̄ = ∑fixi /∑fi = (752+20f)/(44+f)
⇒ 18 = (752+20f)/(44+f)
⇒ 18(44+f) = (752+20f)
⇒ 792+18f = 752+20f
⇒ 792+18f = 752+20f
⇒ 792 – 752 = 20f – 18f
⇒ 40 = 2f
⇒ f = 20
4. Thirty women were examined in a hospital by a doctor and the number of heart beats per minute were recorded and summarized as follows:
Answer:
xi = (Upper limit + Lower limit)/2
Class size (h) = 3
Assumed mean (A) = 75.5
Class Interval | Number of women (fi) | Mid-point (xi) | ui = (xi – 75.5)/h | fiui |
65-68 | 2 | 66.5 | -3 | -6 |
68-71 | 4 | 69.5 | -2 | -8 |
71-74 | 3 | 72.5 | -1 | -3 |
74-77 | 8 | 75.5 | 0 | 0 |
77-80 | 7 | 78.5 | 1 | 7 |
80-83 | 4 | 81.5 | 3 | 8 |
83-86 | 2 | 84.5 | 3 | 6 |
Sum fi= 30 | Sum fiui = 4 |
Mean = x̄ = A + h∑fiui /∑fi = 75.5 + 3×(4/30) = 75.5 + 4/10 = 75.5 + 0.4 = 75.9
The mean heart beats per minute for these women is 75.9
5. In a retail market, fruit vendors were selling mangoes kept in packing boxes. These boxes contained varying number mangoes. The following was the distribution of mangoes according to the number of boxes.
Find the mean number of mangoes kept in a packing box. Which method of finding the mean did you choose?
Answer:
Since, the given data is not continuous so we add 0.5 to the upper limit and subtract 0.45 from the lower limit.
Here, assumed mean (A) = 57
Class size (h) = 3
Class Interval | Number of boxes (fi) | Mid-point (xi) | di = xi – A | fidi |
49.5-52.5 | 15 | 51 | -6 | 90 |
52.5-55.5 | 110 | 54 | -3 | -330 |
55.5-58.5 | 135 | 57 = A | 0 | 0 |
58.5-61.5 | 115 | 60 | 3 | 345 |
61.5-64.5 | 25 | 63 | 6 | 150 |
Sum fi = 400 | Sum fidi = 75 |
Mean = x̄ = A + ∑fidi /∑fi = 57 + (75/400) = 57 + 0.1875 = 57.19
6. The table below shows the daily expenditure on food of 25 households in a locality:
Find the mean daily expenditure on food by a suitable method.
Answer:
Find the midpoint of the given interval using the formula.
Midpoint (xi) = (upper limit + lower limit)/2
Let is assume the mean (A) = 225
Class size (h) = 50
= 225+50(-7/25)
= 225-14
= 211
Therefore, the mean daily expenditure on food is 211
7. To find out the concentration of SO2 in the air (in parts per million, i.e., ppm), the data was collected for 30 localities in a certain city and is presented below:
Find the mean concentration of SO2 in the air.
Answer:
The formula to find out the mean is
Mean = x̄ = ∑fixi /∑fi
= 2.96/30
= 0.099 ppm
Therefore, the mean concentration of SO2 in air is 0.099 ppm.
8. A class teacher has the following absentee record of 40 students of a class for the whole
term. Find the mean number of days a student was absent.
Number of days | 0-6 | 6-10 | 10-14 | 14-20 | 20-28 | 28-38 | 38-40 |
---|---|---|---|---|---|---|---|
Number of students | 11 | 10 | 7 | 4 | 4 | 3 | 1 |
Answer:
Find the midpoint of the given interval using the formula.
Midpoint (xi) = (upper limit + lower limit)/2
The mean formula is,
Mean = x̄ = ∑fixi /∑fi
= 499/40
= 12.48 days
Therefore, the mean number of days a student was absent = 12.48.
9. The following table gives the literacy rate (in percentage) of 35 cities. Find the mean
literacy rate.
Literacy rate (in %) | 45-55 | 55-65 | 65-75 | 75-85 | 85-98 |
Number of cities | 3 | 10 | 11 | 8 | 3 |
Answer:
Class Interval | Frequency (fi) | (xi) | di = xi – a | ui = di/h | fiui |
45-55 | 3 | 50 | -20 | -2 | -6 |
55-65 | 10 | 60 | -10 | -1 | -10 |
65-75 | 11 | 70 | 0 | 0 | 0 |
75-85 | 8 | 80 | 10 | 1 | 8 |
85-95 | 3 | 90 | 20 | 2 | 6 |
Sum fi = 35 | Sum fiui = -2 |
Mean = x̄ = a + (∑fiui /∑fi) х h
= 70 + (-2/35) х 10 = 69.42
CHAPTER NAME | OLD NCERT | NEW NCERT | |
Real Numbers | EXERCISE 1.1 | ||
EXERCISE 1.2 | 1.1 | CLICK HERE | |
EXERCISE 1.3 | 1.2 | CLICK HERE | |
EXERCISE 1.4 | |||
Polynomials | EXERCISE 2.1 | 2.1 | CLICK HERE |
EXERCISE 2.2 | 2.2 | CLICK HERE | |
EXERCISE 2.3 | |||
EXERCISE 2.4 | |||
Pair of Linear Equations in Two Variables | EXERCISE 3.1 | ||
EXERCISE 3.2 | 3.1 | CLICK HERE | |
EXERCISE 3.3 | 3.2 | CLICK HERE | |
EXERCISE 3.4 | 3.3 | CLICK HERE | |
EXERCISE 3.5 | |||
EXERCISE 3.6 | |||
EXERCISE 3.7 | |||
Quadratic Equations | EXERCISE 4.1 | 4.1 | CLICK HERE |
EXERCISE 4.2 | 4.2 | CLICK HERE | |
EXERCISE 4.3 | |||
EXERCISE 4.4 | 4.3 | CLICK HERE | |
Arithmetic Progressions | EXERCISE 5.1 | 5.1 | CLICK HERE |
EXERCISE 5.2 | 5.2 | CLICK HERE | |
EXERCISE 5.3 | 5.3 | CLICK HERE | |
EXERCISE 5.4 | 5.4 (Optional) | CLICK HERE | |
Triangles | EXERCISE 6.1 | 6.1 | CLICK HERE |
EXERCISE 6.2 | 6.2 | CLICK HERE | |
EXERCISE 6.3 | 6.3 | CLICK HERE | |
EXERCISE 6.4 | |||
EXERCISE 6.5 | |||
EXERCISE 6.6 | |||
Coordinate Geometry | EXERCISE 7.1 | 7.1 | CLICK HERE |
EXERCISE 7.2 | 7.2 | CLICK HERE | |
EXERCISE 7.3 | |||
EXERCISE 7.4 | |||
Introduction to Trigonometry | EXERCISE 8.1 | 8.1 | CLICK HERE |
EXERCISE 8.2 | 8.2 | CLICK HERE | |
EXERCISE 8.3 | |||
EXERCISE 8.4 | 8.3 | CLICK HERE | |
Some Applications of Trigonometry | EXERCISE 9.1 | 9.1 | CLICK HERE |
Circles | EXERCISE 10.1 | 10.1 | CLICK HERE |
EXERCISE 10.2 | 10.2 | CLICK HERE | |
Construction | |||
Areas Related to Circles | EXERCISE 12.1 | ||
EXERCISE 12.2 | 11.1 | CLICK HERE | |
EXERCISE 12.3 | |||
Surface Areas and Volumes | EXERCISE 13.1 | 12.1 | CLICK HERE |
EXERCISE 13.2 | 12.2 | CLICK HERE | |
EXERCISE 13.3 | |||
EXERCISE 13.4 | |||
EXERCISE 13.5 | |||
Statistics | EXERCISE 14.1 | 13.1 | CLICK HERE |
EXERCISE 14.2 | 13.2 | CLICK HERE | |
EXERCISE 14.3 | 13.3 | CLICK HERE | |
EXERCISE 14.4 | |||
Probability | EXERCISE 15.1 | 14.1 | CLICK HERE |
EXERCISE 15.2 |